
 
 
 

 ARL-SR-XXXX ● XXX 2018 
 
 
 

 US Army Research Laboratory 

 
 
Toward Intelligent Autonomous Agents for 
Cyber Defense: Report of the 2017 Workshop 
by the North Atlantic Treaty Organization 
(NATO) Research Group IST-152-RTG 
 
by Alexander Kott, Ryan Thomas, Martin Drašar, Markus Kont, 
Alex Poylisher, Benjamin Blakely, Paul Theron, Nathaniel 
Evans, Nandi Leslie, Rajdeep Singh, Maria Rigaki, S Jay Yang, 
Benoit LeBlanc, Paul Losiewicz, Sylvain Hourlier, Misty 
Blowers, Hugh Harney, Gregory Wehner, Alessandro Guarino, 
Jana Komárková, and James Rowell 

 
 
 
 
 
 
Approved for public release; distribution is unlimited.) 

 



 

 

NOTICES 

 

Disclaimers 

 

The findings in this report are not to be construed as an official Department of the 

Army position unless so designated by other authorized documents. 

 

The views expressed in this report are those of the authors and not of their 

employers. 

 

Citation of manufacturer’s or trade names does not constitute an official 

endorsement or approval of the use thereof. 

 

Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 ARL-SR-XXXX ● XXX 2018 

 
 US Army Research Laboratory 

 

Toward Intelligent Autonomous Agents for Cyber 
Defense: Report of the 2017 Workshop by the North 
Atlantic Treaty Organization (NATO) Research Group 
IST-152-RTG 
 
by Alexander Kott, Office of the Director, ARL 

Ryan Thomas, US Air Force, Washington, DC 

Martin Drašar and Jana Komárková, Masaryk University, Brno, Czech Republic 

Markus Kont, NATO Cooperative Cyber Defence Centre of Excellence (CCDCOE), Estonia 

Alex Poylisher, Vencore Labs, Inc., Basking Ridge, NJ 

Benjamin Blakely and Nathaniel Evans, Argonne National Laboratory, Lemont, IL 

Paul Theron, Thales Communications & Security, Gennevilliers, France 

Nandi Leslie, Raytheon, Waltham, MA  

Rajdeep Singh, Leidos Commercial Cyber, Foxborough, MA 

Maria Rigaki, Luleå University of Technology, Luleå, Sweden 

S Jay Yang, Rochester Institute of Technology, Rochester, NY 

Benoit LeBlanc, École Nationale Supérieure de Cognitique/Bordeaux INP, Bordeaux, France 

Paul Losiewicz, DTIC Cybersecurity and Information Systems IAC (CSIAC), Utica, NY 

Sylvain Hourlier, Thales Avionics and Ecole Nationale Supérieure de Cognitique (ENSC)/ 

Human Engineering for Aerospace Lab, Bordeaux, France 

Misty Blowers, ICF International, Fairfax, VA 

Hugh Harney, Axiom, Inc., Columbia, MD  

Gregory Wehner and James Rowell, US Naval Research Laboratory, Washington, DC 

Alessandro Guarino, StudioAG, Cavazzale, Italy 

 
Approved for public release; distribution is unlimited. 

 



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 

valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

April 2018 

2. REPORT TYPE 

Special Report 

3. DATES COVERED (From - To) 

18 October 2018–19 Mar 2018 

4. TITLE AND SUBTITLE 

Toward Intelligent Autonomous Agents for Cyber Defense: Report of the 2017 

Workshop by the North Atlantic Treaty Organization (NATO) Research Group 

IST-152-RTG 

5a. CONTRACT NUMBER 

 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

Alexander Kott, Ryan Thomas, Martin Drašar, Markus Kont, Alex Poylisher, 

Benjamin Blakely, Paul Theron, Nathaniel Evans, Nandi Leslie, Rajdeep Singh, 

Maria Rigaki, S. Jay Yang, Benoit LeBlanc, Paul Losiewicz, Sylvain Hourlier, 

Misty Blowers, Hugh Harney, Gregory Wehner, Alessandro Guarino, Jana 

Komárková, and James Rowell 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

US Army Research Laboratory 

Army Research Laboratory (ATTN: RDRL-D) 

2800 Powder Mill Road, Adelphi, MD 20783‐1138 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 

ARL-SR-XXXX 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

NATO Science and Technology Organisation 

Collaboration Support Office (CSO) 

BP 25, 92201 Neuilly sur Seine, France 

10. SPONSOR/MONITOR’S ACRONYM(S) 

NATO 

11. SPONSOR/MONITOR’S REPORT NUMBER(S) 

 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

This report summarizes the discussions and findings of the Workshop on Intelligent Autonomous Agents for Cyber Defence 

and Resilience organized by the North Atlantic Treaty Organization research group IST-152-RTG. The workshop was held in 

Prague, Czech Republic, on 18‒20 October 2017. There is a growing recognition that future cyber defense should involve 

extensive use of partially autonomous agents that actively patrol the friendly network, and detect and react to hostile activities 

rapidly (far faster than human reaction time), before the hostile malware is able to inflict major damage, evade friendly agents, 

or destroy friendly agents. This requires cyber-defense agents with a significant degree of intelligence, autonomy, self-

learning, and adaptability. The report focuses on the following questions: 

• In what computing and tactical environments would such an agent operate? 

• What data would be available for the agent to observe or ingest? 

• What actions would the agent be able to take?  

• How would such an agent plan a complex course of actions? 

• Would the agent learn from its experiences, and how? 

• How would the agent collaborate with humans? 

• How can we ensure that the agent will not take undesirable destructive actions? 

• Is it possible to help envision such an agent with a simple example? 

15. SUBJECT TERMS 

cybersecurity, cyber defense, autonomous agents, resilience, adversarial intelligence 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
      OF  
      ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

48 

19a. NAME OF RESPONSIBLE PERSON 

Alexander Kott 

a. REPORT 

Unclassified 

b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

301-394-1507 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

Approved for public release; distribution is unlimited. 

iii 

Contents 

Acknowledgments v 

1. Introduction 1 

2. Environmental Considerations for Autonomous Agent Deployment 2 

2.1 Mobility 2 

2.2 Lethality 3 

2.3 Criticality 3 

2.4 Connectivity 4 

2.5 Power and Processing Constraints 4 

2.6 Commoditization and Standardization of Agents for Environments 4 

3. Data Sources for Autonomous Agents 5 

4. Decision Flow-Based Agent Action Planning 7 

5. Autonomous Cyber Agents: Potential Actions 10 

5.1 Response Goal 10 

5.2 Proactive Goal 11 

5.3 Social Goal 11 

6. Applying Machine-Learning Algorithms to Cyber-Physical System 
Security 12 

6.1 Autonomy 13 

6.2 Cyber-Risk Quantification 14 

6.3 Adversarial Learning 16 

6.4 Conclusion 17 

7. A Program for Effective and Secure Operations by Autonomous 
Agents and Human Operators in Communications-Constrained 
Tactical Environments 17 

7.1 Background: The Problem Description 17 



 

Approved for public release; distribution is unlimited. 

iv 

7.2 Plan for Solution 17 

7.3 Details of the Solution 18 

7.3.1 Problem Description 18 

7.3.2 Relevant Formalisms 18 

7.3.3 Tactical Context 18 

7.4 Proposal of a Cognitive Resource Management Model (CRMM) of HMI 
with Autonomous Agents 19 

7.5 Context-Informed Knowledge Representation 21 

7.6 Co-Evolution of Agent Autonomy and the HMI 21 

7.7 Modeling and Simulation and Training 21 

8. Preventing the “Killer Robot” Scenario 22 

Further Reading 25 

9. “Hello, World” Autonomous Agent 26 

9.1 Environment 27 

9.2 Task 27 

9.3 Sensors 27 

9.4 Actions 28 

9.5 Learning 28 

9.6 Testing 29 

9.7 Additional Considerations 29 

9.8 Further Reading 30 

10. Conclusions 30 

11. References 32 

List of Symbols, Abbreviations, and Acronyms 38 

Distribution List 40 
 

  



 

Approved for public release; distribution is unlimited. 

v 

Acknowledgments 

The co-chairs express their gratitude to Ms Katarina Takusova for her outstanding 

help in organizing and executing the workshop, to Mr John B MacLeod for his 

critical role in organizing the workshop, and to Carol Johnson for organizing and 

editing this report. 

  



 

Approved for public release; distribution is unlimited. 

vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTENTIONALLY LEFT BLANK



 

Approved for public release; distribution is unlimited. 

1 

1. Introduction 

This report summarizes the discussions and findings of the Workshop on Intelligent 

Autonomous Agents for Cyber Defence and Resilience organized by the North 

Atlantic Treaty Organization (NATO) research group IST-152-RTG. The 

workshop was held in Prague, Czech Republic, on 18–20 October 2017, at the 

premises of the Czech Technical University in Prague. The workshop was 

unclassified, releasable to public, and open to representatives of NATO Partnership 

for Peace (PfP)/Euro-Atlantic Partnership Council (EAPC) nations. The workshop 

was chaired by program co-chairs Prof Michal Pechoucek, Czech Technical 

University, Prague, Czech Republic, and Dr Alexander Kott, US Army Research 

Laboratory, United States. 

This workshop explored opportunities in the area of future intelligent autonomous 

agents in cyber operations. Such agents may potentially serve as fundamental 

game-changers in the way cyber defense and offense are conducted. Their 

autonomous reasoning and cyber actions for prevention, detection, and active 

response to cyber threats may become critical enablers for the field of 

cybersecurity. Cyber weapons (malware) are rapidly growing in their sophistication 

and their ability to act autonomously and adapt to specific conditions encountered 

in a friendly system/network. Current practices of cyber defense against advanced 

threats continue to be heavily reliant on largely manually driven analysis, detection, 

and defeat of such malware. There is a growing recognition that future cyber 

defense should involve extensive use of partially autonomous agents that actively 

patrol the friendly network, and detect and react to hostile activities rapidly (far 

faster than human reaction time), before the hostile malware is able to inflict major 

damage, evade friendly agents, or destroy friendly agents. This requires cyber-

defense agents with a significant degree of intelligence, autonomy, self-learning, 

and adaptability. Autonomy, however, comes with difficult challenges of trust and 

control by humans.  

The workshop investigated how the directions of current and future science and 

technology may impact and define potential breakthroughs in this field. The 

presentations and discussions at the workshop produced this report. It focuses on 

the following questions that the participants of the workshop saw as particularly 

important: 

 In what computing and tactical environments would such an agent operate? 

 What data would be available for the agent to observe or ingest? 

 What actions would the agent be able to take?  
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 How would such an agent plan a complex course of actions? 

 Would the agent learn from its experiences, and how? 

 How would the agent collaborate with humans? 

 How can we ensure that the agent will not take undesirable destructive 

actions? 

 Is it possible to help envision such an agent with a simple example?  

In addition to this report, the papers presented at the workshop were published as a 

separate volume “Intelligent Autonomous Agents for Cyber Defence and 

Resilience: Proceedings of the NATO IST-152 Workshop, Prague, Czech Republic, 

18–20 October 2017,” edited by Alexander Kott and Michal Pechoucek, which can 

be found online at http://ceur-ws.org/Vol-2057/. 

2. Environmental Considerations for Autonomous Agent 
Deployment 

Authors: Ryan Thomas and Martin Drašar 

With the proliferation of machine-learning (ML) methods in recent years, it is likely 

that autonomous agents will become commonplace in day-to-day military 

operations. We expect a significant boost in their capabilities owing to both 

algorithmic advancements and adoption of purpose-built ML hardware. However, 

the range of agents’ functions will still be, in the foreseeable future, limited by a 

number of environmental factors, which we attempt to enumerate.  

In this section, we recognize 2 types of autonomous agents as 2 extremes on the 

capability scale. At one extreme are preprogrammed heuristic agents, responding 

only to specified stimuli based on a set of preset actions. At the other extreme are 

robust intelligent systems with advanced planning and learning characteristics. 

Capability is then the aggregate of an agent’s intelligence, awareness, 

connectedness, control, distributedness, level of autonomy, and adaptability.  

Environmental factors limit the specific functions and abilities of particular agents 

and the combination of these factors place an upper bound on agents’ capabilities. 

The following sections provide a list of these factors and their impact. 

2.1 Mobility 

Autonomous agents deployed at stationary structures (e.g., buildings or weapon 

systems) should suffer the fewest limitations in their operation, as it can reasonably 
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be expected that such agents will have enough power, processing capacity, 

connectivity, and other resources needed to carry out the most complicated of tasks. 

These systems will be restricted mostly by the ML state of the art.  

Agents deployed on mobile platforms (e.g., vehicles, Soldiers, or missiles) will 

inevitably be limited by intermittent connectivity, power, space, and processing 

constraints, or even the physical implications of their actions. Furthermore, for 

mobile systems, it is likely that the agent will be located at a centralized point in 

the architecture, rather than be distributed across all subsystems. This is due to the 

expected difficulty in accrediting systems with robust intelligent behaviors. 

2.2 Lethality 

Agents operating in systems with lethal capacity will either have to undergo much 

tighter scrutiny or be limited in their actions to prevent the creation of accidental or 

exploited killer bots. In such systems, it is easy to envision agents and humans 

performing as a team, with the human having the final authority for decisions with 

lethal implications. This will require developments in human‒machine trust, 

interfaces, and planning. 

Another option to safeguard lethality would be the use of a 2-tier infrastructure, 

where lethal means are physically separated and thus inaccessible to even a rogue 

autonomous agent. The ML would control the nonlethal tier only, allowing more 

conventional means (or, as described previously, a human) to control the lethal tier. 

2.3 Criticality 

Critical systems, whose failure has severe consequences, mostly operate with clear 

separation of responsibilities and are handled by rigorously trained personnel. 

Failures are reduced by the application of processes, which limit the impact of 

human error. Autonomous agents will likely introduce whole new classes of errors, 

so these error-controlling processes must be updated accordingly.  

There are 3 likely approaches to this: 

1) Improvements in the understanding of ML operations and performance 

limits will enable better scrutiny of the inner workings of autonomous 

agents, constraining the range of possible ML errors and formally proving 

the scope of exhibited behaviors.  

2) Testing methodologies and testbeds will improve, allowing autonomous 

agents to undergo a battery of conformance tests exhaustive enough to give 

informal guarantees of the agent’s operation with acceptable confidence.  
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3) Autonomous agents will be deployed redundantly, allowing for robust and 

resilient operations. Techniques such as voting (e.g., 3 implementations 

with a majority voting on a next action) could be used. 

2.4 Connectivity 

Most mobile platforms will suffer connectivity problems or forced connection 

losses. Autonomous agents, which rely on communications links to enable swarm 

intelligence, command and control (C2), or computation offloading, would be 

severely impaired during connection loss. Therefore, any such ML functionality 

requiring connectivity must be designed with respect to the communications 

environment and timescale in conjunction with required ML decision accuracy. For 

systems in unreliable environments, which need stable communication channels to 

arrive at decisions quickly or require accurate and reliable decisions under all 

conditions, it is up to debate as to whether the presence of autonomous agents is 

worth the personnel training extension, related updates to operational processes, 

and associated certification hurdles. 

2.5 Power and Processing Constraints 

Given the currently immense computation requirements for any autonomous and 

learning behavior, any hardware able to run sufficiently advanced agents will 

require nontrivial space, power, and cooling. Unless there is a significant leap in 

technology, this will limit the available resources for agents, especially for 

deployment in mobile platforms. Developers of agents and policy makers will have 

to carefully consider which autonomous functionalities are necessary or beneficial 

enough.  

There is great potential in bio-inspired autonomy, assisted by mechanical and 

structural features on the host platforms. For instance, insects such as moths and 

flies are an inspiring mix of clever sensor arrays, simple processing cortexes, and 

advanced mechanical wing design that could enable low-power, low-processing 

micro-autonomous air platforms. 

2.6 Commoditization and Standardization of Agents for 
Environments 

We expect that some standard classification of autonomous agents according to 

their capability and requirements is inevitable. Such classification would ease the 

adoption process by reducing the need to evaluate each agent in a specific context 

with regard to whether an agent conforms to a class specification. Military systems 
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then could be limited to specific classes of autonomous agents, thus prescribing the 

level of autonomy such systems can have. 

3. Data Sources for Autonomous Agents 

Authors: Markus Kont and Alex Poylisher 

Possible data sources for autonomous agents can be largely divided into 5 

categories: 1) network traffic, 2) event logs, 3) hardware sensor data, 4) operating 

system (OS)-level software sensor data, and 5) high-level inputs. 

Network traffic can be analyzed on several levels of granularity. On the flow level, 

NetFlow records can be collected from Layer 2 switches and Layer 3 routers (Claise 

2004). Where practical in terms of collection/storage overheads, these can be 

supplemented by full or partial packet captures, and several deep packet inspection 

methods can then be employed for intrusion detection and traffic indexing.  

Event logs can be largely divided between unstructured textual data that would need 

to be processed with clustering and correlation methods (Vaarandi and Pihelgas 

2015; Vaarandi et al. 2015) and structured logs that commonly provide a mix of 

numerical and categorical data. A subset of categorical event logs is audit log data, 

whether it be via generic logging of all user commands or tripwires from policy 

violations, confidential file access, integrity violations, and so on. All major OSs 

provide this functionality via specialized daemons (e.g., the syslog framework in 

Linux). 

Another major source of information is numerical metrics from hardware 

performance counters (e.g., central processing unit [CPU] and memory usage, disk 

and network input/output [I/O], cache hits/misses, and so on) and physical sensors 

(e.g., temperature, voltage monitoring, GPS location, battery status, and so on). 

These measurements can also be correlated with measured human responses from 

sensors attached to human bodies, such as vital signs metrics, which can be quite 

relevant in a military context, but (like many other aspects) depend heavily on the 

agent use case (Currie et al. 2017).  

OS-level sensor data include system call monitoring, in-memory analysis, kernel 

execution tracing, protocol state machine tracking for Layer 2 and 3 (Ionescu et al. 

2009), and so on. All major OSs provide this functionality (e.g., sysdig, 

procfs/sysfs, kprobe/jprobe, Berkeley Packet Filter [BPF]/extended BPF [eEBPF]-

based tracing in Linux). 

Finally, high-level inputs such as mission/goal tracking data are essential in 

contextualizing other measurements.  
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It is also possible to implement decoy methods and moving target defense (MTD), 

even inside a single node, as it is possible to implement this via a simple kernel 

module that would be able to integrate system call tracking and notification to the 

higher detection framework (Kerber et al. 2015). 

Intrusion detection and sensing tools typically use signatures or behavior analysis 

(Thompson and Abello 2015; Soudi et al. 2015). Signature-based detection is by 

far the most commonly used method in practice due to performance considerations, 

but this method is prone to false positives and the detection quality depends on prior 

knowledge of attack vectors (Blumbergs et al. 2016). Note that such feeds and 

analysis methods often feed into each other. For example, network intrusion 

detection produces categorical event log data that can then be further processed 

using event correlation and behavior analysis methods. There is also the need for 

constant aggregation and preprocessing of data. Particularly important are feature 

extraction, data conversion to a numerical vector space, and the reduction of 

dimensionality. Datamining and ML methods are simply not designed for 

processing data in its raw form, thus intelligent and dynamic conversion is needed 

(Ma and Huang 2017). Exact methods of data collection and processing, however, 

depend heavily on the use case and require the creation of custom data processing 

model(s). Note that data collection and sensing modules intertwine heavily with the 

dynamic learning methods that are to be applied. 

The data sources and methods listed previously can be used both for detection and 

training. However, data acquisition for dynamic learning tasks is a significant and 

well-known problem. Operational data from real-world systems may not be 

available due to institutional or legal restrictions. Collecting data from military 

systems introduces further challenges. Apart from security considerations, the 

storage space on fielded systems (often embedded) can be very limited. Thus, 

retention methods may prune viable training data even before the device returns 

from the mission. Even when available, operational data are almost always 

unlabeled and incomplete. For example, network connections between 

compromised workstations and C2 servers are visible from network data, but these 

connections are often obfuscated and nearly identical to regular background traffic.  

Due to the aforementioned difficulties, most academic research in the public 

domain relies on the relatively small number of publicly available and well-

researched data sets. This is a valid methodology for generic datamining and ML 

research, but it severely impairs the feasibility of using the proposed academic 

methods on real-world systems or coming up with relevant data models in the first 

place. As dynamic methods are known to be sensitive to parameter tuning and data 

set characteristics, a method proved to work on one data set may not work with 

another (Sommer and Paxson 2010). To make matters worse, label-drift, or 
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classification when features and labels are not known in advance or may change 

over time, is a significant problem for intrusion detection research and in general 

for ML in the cybersecurity domain, as in adversarial environments opponents are 

constantly evolving new attack techniques to bypass defensive methods. 

Significant research is currently conducted on dynamic learning and threat 

detection. However, this work is held back by gaps in validation methods. There is 

a clear and pressing need to create and maintain up-to-date data sets, which would 

account for missing entries, the need for correlation, and label-drift problems. One 

excellent source of such data can be training exercises (e.g., CyberShield), but data 

collection so far has been secondary to achieving the scenario objectives. Moreover, 

the timespan of a single exercise is compressed and may not exhibit the long-term 

temporal patterns needed for anomaly detection (e.g., those of an advanced 

persistent threat [APT]) and the scope of an exercise is likely to be small in terms 

of network size. 

While actually collecting and labeling more of the exercise data are comparatively 

easy to address in exercise planning, the scale/timespan/variety of live exercises is 

by definition limited by resource availability. A complementary approach is to 

create realistic data sets on demand in emulated/simulated testbeds capable of 

supporting arbitrary network topologies, sufficiently real hardware, real 

OS/application/attack/defense software, and a combination of synthetic and real 

actors. This approach enables a much larger exercise scale/timespan, significant 

variety, repeatability, and data collection tailored for a particular need by the 

researchers themselves. A well-known early example of this approach is the Cyber 

Defense Technology Experimental Research Laboratory (DETERLab; Benzel 

2011); a more recent and militarily-relevant example is the Cyber Security Virtual 

Assured Network (CyberVAN; Chadha et al. 2016), in which multiple diverse 

labeled and fully reproducible data sets were generated over the past 2 years 

(Bowen et al. 2016). 

4. Decision Flow-Based Agent Action Planning 

Authors: Benjamin Blakely and Paul Theron 

Automated intelligent agents for the purposes of cyber defense may be as varied as 

the purposes and missions of the systems in which they reside. The determination 

of an optimal course of action may need to be computed in a small amount of time, 

with limited resources. An agent may be required to respond to the actions of 

intelligent actors (human or otherwise) with partial knowledge about the system it 

is protecting or the impact of its own actions. Here we propose a progressive 

decision-making approach that takes into account not only the properties of the 
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agent itself, but the environment and context in which a decision must be made. We 

propose that additional research into the specific criteria for the optimal decision 

mechanism and acceptance of a proposed course of action, generalizability of such 

criteria, and determination of how traditional autonomous agent techniques perform 

in a cyber-defense context, would assist in the development of special-purpose 

intelligent agents for defending cyber systems from adversarial attack. 

The problem of determining the correct course of action for an automated agent has 

been extensively studied, as summarized, for instance, in Maes (1990) and 

Ferguson (1995). This research is built on decision theory, including psychological 

theories of decision making (Edwards 1954), rational choice (Simon 1956; Day 

1971), decision making with limited resources in psychology (Kahneman 2002) 

and computer science (Bratman 1988), and decision making in complex situations 

when primed by earlier experience (Klein 1998).  

From here, the overall construction of agents (Jennings 1998) has been explored. 

This may focus on their overall behavior, such as logic-based (deduction), reactive 

(mapping from situation to action), belief-desire-intention (data structures 

representing these properties of the agent), or layered architectures (software at 

differing levels of abstraction) (Weiss 2013). As we are primarily interested in 

decision making and planning, it is relevant to look at taxonomies of how agents 

determine a course of action. Norvig (2013) separates agents into simple reflex 

(only using current perception), model-based (environmental models to infer 

unobservable conditions), goal-based (contributions toward a goal), utility-based 

(desirability of an action), and learning (improves based on past outcomes) agents. 

No single approach is appropriate for cyber defense, and thus an optimal 

(correctness and efficiency of computation) decision is likely to require 

progressively increasing difficulty and reliance on mission-specific safety 

parameters. One possible model would consist of the following stages: Offline 

Machine Learning, Pattern Recognition, Online Machine Learning, Escalation to a 

Human Operator, Game-Theoretic Option Search, and Fail Safe. Decisions 

proposed by each sequential (in our model, but could potentially be extended to 

parallel, allowing for consensus or value-based approaches) stage are arbitrated for 

suitability by a decision review stage before being communicated to the relevant 

actuators (logical or physical). If any stage cannot be executed due to environmental 

and system parameters or the agent is unable to make a conclusive or acceptable 

decision, the agent must proceed to the next most-intensive method of decision 

making.  

Loaded into such an agent would be patterns derived from offline learning. This 

may consist of heuristic or signature-based logic that has achieved sufficient 
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confidence that it allows for making decisions in unambiguous situations. Such 

offline learning may condense significant amounts of historical and contextual data 

into a small set of criteria, which can be loaded on potentially low-resource agents. 

This is an important consideration in scenarios such as network appliances, small 

drones, munitions, or other systems, which do not have capacity for a large amount 

of storage and computation onboard. When a set of percepts is to be evaluated by 

the agent, it will first use this offline learning to determine if the percepts represent 

a known pattern that can be directly acted upon. 

If there is no sufficiently high-confidence match or the proposed action is not 

acceptable to the decision analysis arbiter, the agent must make a determination as 

to whether it is in a state conducive to online ML. While this decision is partially 

static given the parameters of the agent, environmental parameters such as available 

power, time available to make a decision, or safety margins might make it infeasible 

to engage a ML engine. If this is not the case, the agent may use ensemble methods 

such as random forest, or less resource-intensive singular methods, to consider the 

current state and historical actions and consequences, and make an appropriate 

decision. The outcome of a decision from any stage, assuming the decision analysis 

arbiter accepts the decision, would be fed back into this engine so that it can benefit 

from all actions of the agent. 

It may then be necessary to escalate to a human operator to provide alternatives and 

ask for a decision or indicate that no acceptable options have been determined, 

requiring human intervention. This is predicated upon either the presence of or path 

to communication to a human operator, as well as sufficient time for an agent to 

invoke a human. Otherwise, the agent must skip this step entirely. 

If the agent has still failed to reach an acceptable decision, it might yet have enough 

information (preloaded or from previous stages) to make a reasonable guess as to 

the outcomes of various actions, even steps ahead. Using this information, the agent 

can use game-theoretic techniques to construct a short time-horizon decision tree 

(“short” being relative to the mission parameters and agent resources), evaluate the 

potential outcomes, and find one that is suitably within compliance, to a given 

probability, of the desired mission outcome. 

Finally, the agent may be required to enter a fail-safe state based upon 

preprogrammed failure behavior in accordance with mission parameters. Is it 

acceptable to simply take no action? Take an action with a lower threshold for 

confidence in efficacy or safety? Terminate, return home, or self-destruct? There is 

no single action that will satisfy all cases, requiring the terminal stage to be loaded 

before agent deployment in accordance with the mission profile.   
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5. Autonomous Cyber Agents: Potential Actions 

Author: Nathaniel Evans 

Agent-based modeling offers a method of embodying a goal-directed cybersecurity 

expert in an autonomous software program (Macal and North 2010). The software-

based agent has goals, performing various actions such as the following to achieve 

them: evaluating its performance, sensing its environment, performing actions, and 

communicating and cooperating with other agents and humans. This section 

describes an autonomous cyber agent with the minor goals of resisting, detecting, 

and responding to adversaries, all of which work to achieve its major goal of 

defending and protecting its own system of computers.  

To achieve its goals, the agent must incorporate several capabilities. Firstly, the 

agent needs to perceive its environment by evaluating the state of its computer 

system(s), detecting changes, and deciding whether those changes are suspicious. 

If it does indeed detect suspicious changes, the agent must respond in an appropriate 

and timely manner. Secondly, the agent needs to manage trust relationships with 

other agents and humans through communication and cooperation. Lastly, 

throughout its activities, the agent needs to assess itself and its goals, and 

proactively initiate goal-directed actions to improve its performance and exploit 

opportunities when possible (Fink et al. 2014). 

The following sections describe the 3 main goals of the cybersecurity agent: 

response, proactive, and social. 

5.1 Response Goal 

The response goal focuses on actions for the protection and recovery from a 

detected suspicious activity. To achieve the response goal, the agent needs to 

perform a variety of activities, ranging from strict protective measures to tailored 

increases in protective measures (Yuan et al. 2014). The strictest protective 

measures include the shutdown of processes or an entire computer system, or 

disconnecting the computer from communications networks. Other measures 

preserve several important facets of data security, including confidentiality 

(through encryption), protection (by scrambling), and availability (by destroying 

the data). The agent can also restore the system to its last well-known good state. 

The agent needs the capability to tailor and increase its protective measures through 

increased restrictions on configurations, processes, and communication (Bartos and 

Rehak 2012). For example, changes to configurations can be prohibited, 

configurations and files can be locked, processes can be isolated, and 

communications can be restricted by direction (inbound and outbound), location 
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(IP address, hostname, etc.), and characteristics (latency, bandwidth, speed, and 

amount). 

While responding, the agent communicates with other agents to identify and 

characterize potential adversaries. If possible, the agent should characterize 

adversaries as benign or malicious, provide a warning of potential foes, recommend 

a response action, and even receive guidance from other agents on how to respond. 

To improve future responses, the agent needs to record and learn from incidents, as 

well as the actions and outcomes that they instigate. To improve its own resilience, 

the agent needs the capability to clone itself. 

5.2 Proactive Goal 

The proactive goal lists behaviors that help an agent improve its performance or its 

protection capability. To achieve the proactive goal, the agent should not simply 

act in response to its environment; it should be able to exhibit opportunistic, goal-

directed behavior and take initiatives when appropriate. 

Internally, the agent needs to evaluate itself frequently and apply updates (patches) 

when necessary.  

The agent also needs to assess the state of a system, understand what is normal, and 

have methods of detecting and characterizing anomalies, including analysis of all 

event logs. Toward detecting anomalies, the agent needs change-detection tools to 

discover unauthorized modifications to the filesystem, network device 

configuration, or application code. 

The agent shall assist in the deployment and management of proactive defense 

technologies such as MTD and cyber deception. Various MTDs can benefit from 

oversight by autonomous cyber agents, including those that focus on process 

rotation (e.g., Morphisec), application rotation (e.g., Dynamic Application Rotation 

Environment [DARE] MTD), OS rotation (e.g., Multiple OS Rotational 

Environment [MORE] MTD; Thompson et al. 2014), IP rotation (e.g., 

Morphinator), and network path rotation (e.g., Stream Splitting MTD). Agents can 

also employ various cyber-deception methods, including direct observation hiding, 

process hiding, data hiding, network hiding, investigation hiding, and social hiding.  

5.3 Social Goal 

The social goal describes how and why an agent should communicate and cooperate 

with other agents and humans. This collaboration essentially improves the overall 

protection of a given computer system (Jennings et al. 2014).  
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The primary communication ensures the sharing of information that will allow 

other agents to understand the state of the computer system, its adversaries, and its 

responses. The shared information includes whom and what has been blocked, what 

has been allowed, and the associated signatures that have been used to create these 

blocks and allows. 

Other systems need alerts from the agent on the actions that were taken and the 

expected effects of said actions. The agent needs to maintain awareness about the 

state of other agents, including uptime and the ability to respond by cloning peers. 

Establishing and managing trust relationships enables agents to cooperate and rely 

upon each other. The agents need methods to manage those trust relationships, 

including the ability to create, break, and detect violations within trust relationships. 

Agents shall interact, when appropriate, with other artificial agents and humans in 

order to complete their own problem solving and help others with their activities. 

6. Applying Machine-Learning Algorithms to Cyber-Physical 
System Security 

Authors: Nandi Leslie, Rajdeep Singh, Maria Rigaki, and S Jay Yang 

Cybersecurity analysis is transforming to support cyber-physical systems (CPS) 

security: the needs for protecting the data confidentiality, integrity, and availability 

have accelerated with the increased autonomy and connectivity of engineered 

systems. Yet, there are significant research gaps in CPS security. Several research 

questions are what specific ML algorithms exist for securing CPS processes and 

data, whether considering adversarial learning and cyber deception can enhance 

CPS security, and to what extent can useful cyber-defense information be learned 

to predict or prevent cyberattacks. For CPS requiring standalone functionality over 

extended periods of time, the entities tend to have significant constraints on 

computational resource use for network, battery power, and memory usage, which 

also impact the design of the cyber systems monitoring and securing substantive 

amounts of data. In this case, when considering methods for CPS defense, whether 

for commercial or mission systems, traditional intrusion detection methods are 

required yet inadequate for ensuring that these systems operate efficiently and 

securely without human support or maintenance. For example, in an Internet of 

Things (IoT) environment, mobile Android devices can function successfully with 

lightweight intrusion detection systems (IDSs)—these IDSs operate with minimal 

computational resources by using n-grams of packet payloads to classify malicious 

network traffic combined with supervised linear classification and Bloom filters 

(Wang and Stolfo 2004; Chang et al. 2013; Yu and Leslie 2017). Furthermore, 
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replacing signature-based IDS with these computational algorithms can improve 

IDS performance, including efficiency and prediction performance (Wang and 

Stolfo 2004; Chang et al. 2013; Yu et al. 2017; Yu and Leslie 2017). It is known 

that ML and anomaly-based detection algorithms can improve detection accuracy 

because these computational methods allow for the detection of novel cyberattacks, 

where the exploits were previously unknown or no signatures exist (i.e., “zero-day” 

cyberattacks), which is by definition infeasible with signature-based or misuse 

detection models for IDS (Lunt 1993; Wang and Stolfo 2004). However, these 

anomaly-based algorithms for IDS tend to have high false-positive rates (Lunt 

1993)—benign packets are frequently misclassified as malicious—requiring 

human analysts to review the IDS alerts in more detail. 

The December 2010 report of the President’s Council of Advisors on Science and 

Technology (PCAST) included cybersecurity, ML, and CPS among the research 

priorities proposed. Furthermore, the PCAST report recommends that US 

Government agencies, the National Science Foundation (NSF), and the Defense 

Advanced Research Projects Agency (DARPA) take steps to ensure data privacy 

and confidentiality for CPSs by developing cybersecurity models using 

statistical/ML and computer science that are characterized, in part, by what 

adversary actions can be withstood. In this section, we explore 3 capabilities for 

software agents (Genesereth and Ketchpel 1994) that can advance CPS security in 

adversarial environments with limited network connectivity: 1) autonomous 

cybersecurity provided by software designed to monitor network security and 

perform other cyber-defensive actions, which reside at the host and operate with 

intelligence and flexibility (Balasubramaniyan et al. 1998); 2) cyber-risk 

quantification, which is lacking in many operational systems (Leslie et al. 2017); 

and 3) adversarial learning to address the fact that cyber systems are often reactive, 

excluding adaptive adversarial decision making and actions that can specifically 

influence intrusion detection and prevention. We refer to this cyber system for CPS 

as an “autonomous cyber-defense agent (ACDA)” throughout. 

6.1 Autonomy 

To advance autonomy, ACDAs for a CPS network with limited interconnectivity 

should automatically switch between processes (e.g., intrusion prediction, IDS, and 

antivirus), learn and adapt from their local environment with real-time data, and 

share estimates and predictions asynchronously. When connectivity is available, 

these agents should use online learning or batch-training techniques; whereas 

during periods of isolation, agents would benefit from operating with fewer features 

in the testing set than those available during training. In a mobile ad hoc network 

(MANET) with Android devices, for example, it is known that using this batch-
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training concept, where agents are downloading and sharing information with their 

peers and C2, can improve efficiency (Chang et al. 2013; Yu and Leslie 2017). 

ACDAs should be able to defend against novel or anomalous cyberattacks for 

which IDS/intrusion protection system (IPS) signatures do not exist, for instance, 

by using anomaly-based detection and unsupervised and semi-supervised learning 

models (Balasubramaniyan et al. 1998). Probabilistic graph models (PGMs) 

provide scalable solutions for estimation in coordinated environments to handle 

issues like rumor propagation (Kschischang et al. 2001), which may ensure 

cybersecurity. However, additional research is needed to validate a successful 

application of PGMs to cybersecurity and risk assessments.  

Although an ACDA should be able to detect cyberattacks with network and host-

based systems combined with signature and anomaly-based detection models, 

cyber situational understanding and awareness can enhance the autonomy of these 

entities by integrating cyber-risk quantification to improve ACDA predictions 

regarding the cyber threats and vulnerabilities along with adversarial learning 

algorithms—these computational models simulate the adaptive decision making 

between agents and their adversaries—that can influence the full interconnected 

process for cyber-risk quantification.  

6.2 Cyber-Risk Quantification 

Enhancing an ACDA with intrusion prediction and forecasting models can 

transform the computational algorithms from being solely detection focused to 

incorporating statistical learning models to determine which network activities are 

correlated with and predictive of cyberattacks, including attack graphs (i.e., 

Bayesian), variable length Markov models, semi-supervised learning, and 

generalized linear models (Strapp and Yang 2014; Yang et al. 2014; Leslie et al. 

2017). Modeling cyber vulnerabilities can involve predicting the number of 

successful cyberattacks and the lateral movement of malicious traffic through a 

network. Furthermore, it is known that predicting the lateral movement of an attack 

within the CPS can provide specific details about the cyberattack timing and 

methods. Figure 1 shows the steps involved in cyber-risk modeling. 
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Cyber-risk modeling involves interconnected processes. 

 

Fig. 1 Cyber-risk modeling 

Measuring and examining the similarities between successful cyberattacks—this 

includes attack sequences, tactics, and overarching adversarial strategies—is an 

additional ACDA capability that can reduce exposures to cyber risks. Specifically, 

advancing ACDA cyber-risk assessments involves understanding how well 

observed attack sequence can be “explained” based on other attack sequences (e.g., 

Kullback–Leibler [K-L] divergence). For example, the DARPA Explainable 

Artificial Intelligence (XAI) program (Gunning 2016) focused on improving the 

ability of ML models to explain the black box decision making to the end-users 

providing the level of trust needed in operating with these autonomous systems (Lei 

et al. 2016). This includes developing techniques, such as Local Interpretable 

Model-Agnostic Explanations (LIME; Ribeiro et al., 2016) to learn more 

structured, interpretable, and causal models as well as discriminative ML models 

to infer and interrogate explainable models from a black box (Guo et al. 2017). 

More recently, the Intelligence Advanced Research Projects Activity’s (IARPA’s) 

Cyber-attack Automated Unconventional Sensor Environment (CAUSE) program 

(Rahmer 2015) calls for forecasting of cyber incidents using unconventional 

signals. The performers have preliminary results to demonstrate the extent data 

such as public sentiment, social media trends, news reports, open threat exchange 

update, dark web transactions, and so on can help forecast future cyber incidents. 

For example, through the use of reconfigurable Bayesian networks with an 

innovative way to deal with imbalanced data, Okutan et al. (2017) show that 

approximately 70% area under curve (AUC) can be achieved to forecast the 
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occurrence of specific cyberattack types on specific organizations. In addition, 

Werner et al. (2017) show the use of time-series analysis using autoregressive 

integrated moving average (ARIMA) can be effective in some limited cases. 

6.3 Adversarial Learning 

Learning in the presence of adversaries implies that ACDAs need the ability to 

defend themselves against cyberattacks during both training (i.e., data and model 

poisoning) and deployment with adversarial samples. In addition to classifying the 

attackers in terms of their knowledge of the learning models (Papernot et al. 2017) 

or access to the data used for learning (Barreno et al. 2006), we can also define the 

capabilities of an ACDA in terms of robustness to deception based on prior 

knowledge of adversaries’ capabilities (McEneaney et al. 2007; McEneaney et al. 

2008). 

While actual attribution of malware authorship or attacks can be a difficult task due 

to varying levels of attacker deception tactics, learning about their characteristics 

can be a more useful approach. Source code, call graph, and domain similarity, as 

well as other types of semantics, can be used for that purpose. Learning about 

adversarial tactics and behaviors can be used to predict an adversary’s next moves. 

Empirical adversarial models can be generated using semi-supervised learning 

(Strapp and Yang 2014) and likely scenarios can be produced using simulation of 

adversarial behaviors (Moskal et al. 2017).  

In addition, robustness to deception requires that agents address unknown-

unknowns, and to do so, agents must simultaneously address scalability. For 

example, for IoT, millions of devices each requiring the security provided by an 

ACDA could benefit from Curse of Dimensionality-Free methods—these 

computational algorithms provide scalability by transforming the information state 

and functions over the information states into Idempotent algebras and using highly 

efficient pruning techniques (McEneaney 2009). Furthermore, resource-

constrained agent networks need to address deception with a distributed deception 

robust control approach (Lawson et al. 2015), starting with smaller/multiple local 

games spanning a smaller state space using a priori knowledge and expanding them 

dynamically with observations (Horák et al. 2017). In many cases, cyber robustness 

is a more feasible goal than intrusion detection, and game-theoretic modeling 

provides mission-centric robust decision making in the face of deception using ML 

for improving the information state spanning (McEneaney et al. 2007). Similarly, 

beyond just defending and detecting adversarial attacks, an ACDA must be able to 

adaptively taking measures such as launching of cyber deception as a defensive and 

preventative action (Durkota et al. 2016). For example, agents can have value-based 
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tasking and use game-theoretic and optimization approaches to ensure that the 

information gain/value is maximized with respect to the goal of the agent 

(McEneaney et al. 2008).  

6.4 Conclusion 

Increasing numbers of CPS and IoT devices must operate securely in contested 

environments with limited connectivity. To address these cybersecurity and risk 

challenges, our proposed ACDA for each host has 3 main capabilities that are 

designed to advance CPS security: autonomy, cyber-risk modeling (Strapp and 

Yang 2014; Leslie et al. 2017), and adversarial learning (Moskal et al. 2017; 

Papernot et al. 2017). Cyber-risk and security modeling enhance the situational 

understanding for the Internet of Battlefield Things (IoBT)—this process involves 

using computational algorithms to predict and detect successful network 

intrusions—by quantifying the combined impact of cyber vulnerabilities and 

threats on a networked and engineered system. Moreover, the framework that we 

propose here for an ACDA also uses adversarial learning and game-theoretic 

modeling techniques to incorporate advanced adversarial decision making and 

cyber deception and advance cyber-risk and security quantification. These 

capabilities are critical for assessing how to increase autonomy in CPS/IoT defense 

and may help ensure that connected entities are interoperable, reliable, and secure. 

7. A Program for Effective and Secure Operations by 
Autonomous Agents and Human Operators in 
Communications-Constrained Tactical Environments 

Authors: Benoit LeBlanc, Paul Losiewicz, and Sylvain Hourlier 

7.1 Background: The Problem Description 

We consider the following question: “What specific means can help human 

operators deal with the intersection of remote interactions with autonomous agents 

in bandwidth- or emission-constrained tactical communications environments, with 

the goal of satisfying cybersecurity and emissions control (EMCON) 

requirements?” 

7.2 Plan for Solution 

We employed a 7-step process to design an applied research and development 

program to address the problem: 

1) Clearly identify the applied autonomy problem and goals. 
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2) Propose relevant formalisms with which to describe the problem. 

3) Provide a tactical context within which to bound the problem. 

4) Describe a method for cognitive resource management of the tactical 

communications constraints. 

5) Propose a knowledge representation scheme.  

6) Co-evolve development of the specific autonomous agent platforms and the 

cognitively informed human‒machine interface (HMI). 

7) Design a training program for both autonomous agents and human 

operators. This should be iterative in the course of the development of the 

agents and the HMI. 

7.3 Details of the Solution 

7.3.1 Problem Description 

Effective use of intelligent agent autonomy is the proposed means to offset 

communications constraints imposed by tactical considerations. However, this 

autonomous capability needs to satisfy the necessary and sufficient conditions for 

adequate situational awareness, security, and battle management by both local and 

remote human operators. It is proposed that autonomy be applied adaptively to the 

tactical situation at hand, using an extension of a cognitive resource management 

approach developed by the Ecole Nationale Supérieure de Cognitique (ENSC) and 

Thales. 

7.3.2 Relevant Formalisms 

We proposed 2 mature candidates: Unified Modeling Language (UML) by the 

Object Management Group (OMG 2015) or Entity Relationship Models (ERM) 

developed by Peter Chen (1976), now at Carnegie Mellon University. 

7.3.3 Tactical Context 

We proposed the use of predefined tactics, techniques, and procedures (TTPs) for 

cybersecurity and operational security (OPSEC) community human operators (e.g., 

cyber operations for cyber mission forces [CMFs]). We have also employed an 

exemplar tactical context by using an exemplar system for cockpit interactions 

based on work carried out at ENSC. 
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7.4 Proposal of a Cognitive Resource Management Model 
(CRMM) of HMI with Autonomous Agents  

We sketch out a CRMM evaluated to be both adequate and fruitful for use by both 

autonomous agents and human agent operators (Fig. 2). This CRMM was the most 

controversial aspect of our 7-step process. It necessitated a model that was 

relatively mature, but analogical, insofar as the cognitive primitives and processes 

of both software agents and human agents could only be analogically mapped into 

each other at the lower levels of the model. We proposed an extension of one of the 

cognitive models previously developed by Sylvain Hourlier of the Human 

Engineering for Aeronautics Laboratory (HEAL; Hourlier et al. 2014). This work 

was jointly developed by ENSC and Thales. It was evaluated to be appropriate for 

use in this domain as 1) it had already been implemented and tested for HMI use 

by Thales Avionics in the AV2020 cockpit demonstrator, and 2) it was felt to be 

sufficiently intuitive to provide a fruitful analogical model for application to 

autonomous agent HMI.  

 

Fig. 2 CRMM process 

In the CRMM, the 4 classical human strategies that favor an economical use of 

operator resources have been analyzed and transposed for this application: 

anticipation, routinization, schematization, and delegation. The original application 

was to incorporate them into the design of avionics to facilitate their use, hence 

favoring better pilot cognitive resource management. The ambition here is to 

analyze these 4 strategies and provide for their opportune application to human‒

autonomous agent collaboration. As the CRMM was developed initially at an 

individual level, it is a logical step up to extend the model to a collective multiple-

agent collaboration.  

The goal of the CRMM is to point to the efforts that we must do in systems 

development to preserve and optimize the cognitive resources of users. Doing that, 
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the human user is adequately prepared to commit their own cognitive resources to 

the realization and consequences of the agent’s action within the context of a larger 

plan. 

The following describes an exemplar hierarchical CRMM: 

1) The base resource level is composed of reflex routines (i.e., purely 

autonomous reflexive procedures, carried out by an agent in 

communications-constrained environments, with possibly no reporting by 

the agent or acknowledgement by the human operator based on EMCON). 

They are presumed to be nonoverrideable by the human operator. Having 

reflexes or automatic routines enables agent autonomy. Full knowledge of 

these reflex actions improves the human user activity, transforming them, 

by extension, into an actor in tactical role playing. Full situational awareness 

by the human operator may be constrained by the EMCON state, however. 

2) The second resource level is composed of semi-autonomous subroutines 

potentially integrated into different specific plans, with planner oversight. 

These are predetermined routines but with oversight (i.e., they are not 

reflexive actions; the agent needs to be told to execute them from among 

alternative actions). The agent needs to receive either a monodirectional 

order to execute, or if not available, an a priori default procedure “pre-

visioned” and decided by its own local sensor input. The human operator 

would be aware of what the previsioned defaults are, and which, in the 

appropriate communications environment, could be overridden by the 

human operator. Anticipation is an opportunity for the operator to put their 

own personal indicators in a kind of timeline, which could be developed 

during the action. The human operator is primed to be ready to interoperate.  

3) The third resource level incorporates situation-specific collaborative 

schemas or decision trees with critical decision points that would require 

collaborative input for the agent to execute (i.e., the agent has to wait for 

appropriate information to execute, as the agent cannot execute based on its 

internal sensor input alone). In these cases, the agent requires offboard data 

for a specific situation, and no a priori or default action is possible, such as 

using satellite missile targeting data for over-the-horizon (OTH) targeting. 

Schematization is a way to install pretested procedures related to a tactical 

action, involving diverse reactions, with minimal communications 

exchange. 

4) The highest level envisioned is that of delegation. The agent is here 

reporting aspects of its internal situational awareness of its own capability. 

The agent then delegates an action to be performed by another agent or 
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human operator (e.g., the agent is unable to carry out a predefined 

subroutine or collaborate in a situation-specific schema, and delegates the 

response to an alternate). Delegation adds a kind of autonomous service 

support, activated as needed, within larger actions. The human operator is 

expecting to be offered the lateral use of alternative agents as part of their 

operational toolset.  

All of these levels are inherently emissions-correlated action plans (i.e., the level 

of autonomy and human operator interaction is correlated to the EMCON levels in 

effect). 

7.5 Context-Informed Knowledge Representation 

An adequate knowledge representation scheme for HMI in communications-

constrained tactical environments was evaluated to be the most mission- and 

platform-specific area within this research program. Our strongest insight was that 

we needed compact representations of the information required to satisfy 

operational constraints for individual autonomous platforms and human operators 

within their C2 architectures. These necessary and sufficient minimal 

representations could be designed a priori by referring to mission- or platform-

specific TTPs, but would need validation for adequacy by high-fidelity modeling 

and simulation (M&S) and actual training exercises. 

7.6 Co-Evolution of Agent Autonomy and the HMI 

The recommendation is for iterative design and development of agent autonomy 

along with the HMI to support it. This includes modeling, simulation, and prototype 

testing long before systems are sent to operational test and evaluation (OT&E). 

7.7 Modeling and Simulation and Training 

The requirement for effective M&S and operational training with autonomous 

systems goes without saying. It should be acknowledged by systems developers 

that there may be unanticipated emergent effects that may arise with regard to 

human interaction with autonomous agents. Effective M&S of just autonomous 

agent behavior may be easier to carry out, as we can constrain their behavior when 

we build them. The interaction of autonomous agents and human operators is less 

reliably modeled, due to the possibility of emergent behaviors found in complex 

adaptive systems (CASs) (Holland 2006). This is due to the adaptive behavior of 

all the elements in the system, including the human operators. 
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8. Preventing the “Killer Robot” Scenario 

Authors: Misty Blowers, Hugh Harney, and Gregory Wehner 

What specific means could prevent an autonomous agent from evolving into a killer 

bot or exercising some other undesirable behavior? While the notion of “killer 

robots” may be dramatized by science fiction and popular culture, the potential for 

autonomous systems to produce fatal results is a very serious concern. From 

emerging technologies, such as self-driving vehicles, to established examples, such 

as shipboard automated missile defense systems, autonomous devices with the 

capacity for causing unintended harm are a reality. 

Autonomous agents hold the promise of highly efficient execution of complex 

tasks, with the implication that the agents can perform the task as well as or better 

than a human counterpart. The other side of that promise is that these agents will 

behave in ways we cannot predict. For any autonomous agent scenario, the risk of 

harm can be determined as a factor of the reach of impact of the system affected by 

the autonomous agent. Impact is the measure of unintended harmful consequences 

of the affected systems. For example, for an autonomous weapons system, impact 

is the damage the weapon can cause and reach is the range of the weapon. Reach 

must not exceed the boundary of need—which is determined by the value of the 

system mission—and need must be considered against the consequences of 

potential impact. 

Consider an air-gapped autonomous agent deployed on a remote device in a 

dangerous environment. The agent has the capability to administer the remote 

device in the absence of human oversight based upon mission parameters and the 

data it collects from its environment. The risk may be assessed by quantifying and 

characterizing the potential impact of the remote device the agent administrates. Is 

it a weapon system, a communications relay, or a radar station? Can the components 

be manipulated by misuse or neglect to produce dangerous conditions? Do those 

conditions outweigh the need met by the system? In the example of an air-gapped 

autonomous system, there is a perception that the “reach”, or ability to affect other 

systems or assets, is limited. However, this is not always the case. The “Stuxnet” 

worm is a perfect example of how a cyber payload designed for a specific target 

system made its way to the outside world and had unintended effects.  

Another scenario is a “bot”, or self-contained software program in a distributed 

network, capable of making decisions on what actions to take to either defend or 

attack a network environment. It may base these decisions upon information that it 

senses and learns from the network environment or from information it receives 

from other “bots” operating in the same environment. Such agents are often driven 
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by a type of utility function, such as minimizing the number of nodes in this 

network environment that are compromised by malware. For a networked device, 

risk is harder to define—as the range of potential impact to consider may extend to 

every device in the network. What are the implications if the “bot” spreads to the 

wide-area network? Depending on the capacity of the agent, software boundaries 

may limit the reach, but it is prudent to be cautious of this assumption. Risk in this 

scenario is tightly bound to the level of effect the agent can produce on the network 

and other networks that are connected to it. Consideration should also be given to 

a peer-to-peer, or robot-to-robot, oversight, which may result in more sophisticated 

solution spaces than those constrained by human comprehension. The distribution 

and networking of these autonomous devices extend the basic logic, allowing group 

interactions that can operate counter to the mission as stated. 

We therefore frame prevention as the reduction of risk of impact and the resilience 

to both intentional and unintentional compromise. An unintentional compromise is 

the result of a malfunction or unforeseen circumstance for which the system is ill 

pre-prepared. An intentional compromise is the result of a malicious act that results 

in an effect outside of the intended design or purpose. Prevention can be broken 

into 2 main approaches: restriction, or bounded autonomy, and self-guidance driven 

by some ethical code of behavior. 

Some members of the scientific community believe that autonomous capabilities 

should be designed with boundaries and limitations, while others believe that the 

learning mechanism should not be constrained until sufficient M&S has been 

conducted to allow the autonomy to discover complex solution spaces that would 

have been outside the bounds of human definition. As an approach to prevention, 

restriction is clearly the first design decision that must be taken into account.  

Limiting autonomy produces a fundamental reduction of impact, yet it may not 

allow the system to meet the mission need. Other restrictions may applied for 

unshackled agents—mechanical governors on device range, resource restrictions 

that limit impact, or network restrictions to limit mobility. Supervision is a form of 

external restriction, where manual overrides, backdoors, and input dependencies 

for execution tie impact to human judgement. The most important restriction may 

be on market deployment. The promise of benefits cannot be allowed to outstrip 

the rigors of research and development. Fielding devices with agents whose 

capacity for impact is not fully understood would be a failure of humanity, not 

artificial intelligence. 

The notion of self-guidance approaches the field of robot ethics. How can 

autonomous agents be imparted with decision rulesets that guide their own 

evolution and interactions, and how can those rulesets be partitioned off from the 
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range of effect. It is hard enough to determine ethical guidance regarding human 

agents, and even with clear rules, humans do not always follow them. Let’s assume 

we somehow design an autonomous agent to follow the Geneva Convention—what 

happens if the device sensors that identify humans malfunction or are deliberately 

sabotaged? What if an autonomous car is deceived into identifying sidewalks as 

roads? Can an autonomous agent reach the conclusion that they are causing impact 

and assess their own guidance protocols? If those protocols have been corrupted, 

what action should the agent take? It may be the case that these rulesets be 

partitioned in such a way that any change to them immediately causes the agent 

destroy itself, and perhaps even the device it affects. 

Looking ahead, there seem to be 2 types of these peer-to-peer interactions that need 

to be understood. The first behavior is related to operations as a cooperative system 

rather than as an isolated device. This system-level behavior can be understood if 

we examine network gateways that we will assume are autonomous. Each gateway 

may learn that a reduction in performance may be the appropriate response to 

sudden increases in traffic from a single source. However, if all gateways have this 

logic, then the response to an emergency state may result in the gateways reducing 

performance exactly at the time it is needed the most. Basic research is needed to 

capture human-like judgement ontology and logic. This is a challenging topic given 

that judgement logic needs to be embedded on independent devices all operating 

with imperfect knowledge. At first blush, a structure for heterogeneous logic is 

required to facilitate distributed mission accomplishment. This mirrors the 

judgement of humans; people apply heterogeneous logic and thereby avoid some 

fragile vulnerability states. 

The second behavior relates to the autonomous system interacting with the 

embedding environment. Again, the autonomous system needs to develop some 

human-like characteristic that is arguably rare in even human systems—judgement 

of reasonable appropriate response. Consider a distributed net of military robot 

guardians protecting a resource. An adversary probes the area. The guardians have 

the option to not respond (preserving the secrecy of location), respond with minimal 

force, or respond at total capability. The judgement normally performed by humans 

will consider the situation at hand, then make a value judgement. Basic research is 

needed to develop a definition, creation, and testing of this judgement logic. 

Advances in game theory point to some attractive research that could lead to 

advances in this logic. Choosing appropriate objective and reward functions may 

also be critical to the evolution of behaviors. To add to the complexity, this logic 

further needs to account for distributed autonomous processing and execution. 
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If we look at independent agents operating in a system using similar logic and 

requiring similar resources, we then could consider a classic CAS. CASs have been 

studied using very simple logic. There are classic behaviors that seem to occur 

across observed systems (from agriculture to epidemiology). These systems tend to 

create organized behaviors that work while the system has ample resources; 

however, these systems tend to show changes in organization under stress, leading 

to catastrophic failure modality. 

Current testing and simulation models need basic advances to facilitate multilevel 

tests. Today, atomic device testing would validate proper functionality in isolation. 

Research is needed to define a peer-to-peer networked functionality definition and 

compositions adequate for validation of autonomous group functionality in 

multiple complex scenarios. Finally, the autonomous group must be tested in 

realistic emulations of the larger environment where it is intended to operate, not 

just to assess its risks as one agent, but the risk that arise from a single agent’s 

interactions with a larger distributed system. This will require an ontology spanning 

multiple environments with sufficient complexity to define success and failure 

conditions. More test and evaluation are necessary to reduce risk of the “killer robot 

scenario” and allow the community to develop autonomous capabilities that can 

incorporate complex human judgement with compassion and vision. 
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9. “Hello, World” Autonomous Agent 

Authors: Alessandro Guarino, Jana Komárková, and James Rowell 

The challenge we tackle in this section is the design of an actual autonomous agent, 

small and simple to implement but able to illustrate the essential functions any 

autonomous intelligent agent (AIA) should possess, albeit in a streamlined way. 

The agent proposed here is a purely software agent intended for cyber defense only. 

To be a proper AIA, it should fulfill the following 6 characteristics: 

1) An agent is strictly associated with its environment: an autonomous agent 

outside the environment it was designed for can be useless, or not even an 

agent at all. Franklin and Graesser (1996) have given a convincing 

definition of agents and the ways in which they differ from other software. 

The first 4 points in our definition draw from their definition. 

2) An agent interacts with the environment, via appropriate sensors 

providing input from it and appropriate actuators, allowing the agent to 

act and influence that environment. 

3) An autonomous agent acts toward a goal, or, in other words, it has an 

“agenda”. In particular, an autonomous agent developed for warfare 

operations is assigned a target. 

4) The activities of a truly autonomous agent are sustained “over time”, so it 

must have a continuity of action. 

5) An autonomous agent should possess an adequate internal model of its 

environment, including its goal—expressed possibly in terms of world 

states—together with some kind of performance measure or utility 

function that expresses its preferences. 

6) An agent must possess the capability to learn new knowledge and the 

possibility to modify over time its model of the world and possibly also 

its goals and preferences. 

In this section, we describe the agent and explain how it fulfills these requirements. 

We define its environment, task, and properties, such as sensors and actions. We 

also discuss possible extensions of the agent. 

To make these “Hello, world” autonomous agents feasible, the design makes 

specific assumptions about the environment in which the agent operates, and the 

number and type of inputs and outputs its sensors and actuators will have. This has 

the aim of keeping the complexity low. 
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9.1 Environment 

AGENTX lives in a virtualized cloud environment that supplies some unspecified 

cloud-based service. We assume this platform runs 3 kinds of virtual machines 

(VMs, or virtual servers): database servers, application servers, and web servers. 

We also assume that a hypervisor exists to manage the platform and balance the 

load. 

9.2 Task 

Again, for the sake of simplicity, AGENTX performs one specific function and not 

in an open-ended generic network defense mission. Its goal is to manage a set of 

honeypot (HP) virtual servers with the objective to deceive adversaries and deflect 

cyberattacks against the cloud platform. Its architecture is monolithic (as opposed 

to a distributed, swarm-like structure) and operates at the hypervisor level of the 

system. To perform some of the available actions, AGENTX relies on small applets 

installed on each virtual server, for instance, exposing a RESTful application 

programming interface (API). It must be noted that in the context of this proof of 

concept, security measures that in a real environment would be mandatory are 

overlooked (e.g., encryption of communications, self-protection of the agent itself, 

and so on). 

Since the mission of AGENTX is purely deception, it implements the capability of 

communicating to other autonomous agents (and/or to human supervisors) the 

necessity to intervene and implement active defense measures. 

The agent has access to background information, such as a set of ready-made HP 

images, dummy process containers, and dummy files. 

9.3 Sensors 

The sensors are able to access the following data and information: 

 Alerts from IDSs (count and severity) 

 Integrity information of critical files on the VMs 

 Metadata about critical files on the VMs 

 Processes 

 Log files 

 Metrics on the level of use of resources and system load 

 Feedback and replies from other agents tasked with active measures 
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9.4 Actions 

The following actions are available to the agent: 

 Starting and stopping HP VMs. 

 Starting and stopping actual virtual server instances (optionally). 

 Initiating a “cry for help” message to other agents (or humans). 

 Deploying dummy files and applications, and quarantine files (via the 

applets). 

9.5 Learning 

The agent implements a reinforcement learning model employing an appropriate 

reward function: 

 CW
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where 

honey_events: metric for attacks/events against the HPs;  

security_events: number of attacks against the real servers (detected by IDSs); 

total_resources: metric for the total amount of resources available; 

Δ_resources: resources freed or needed (example, spinning HPs) to implement an 

action by the agent (negative when resources are needed, positive when resources 

are freed);  

justified_CFH: “justified cries for help”, number of messages (alerts) sent by the 

agent reacting to actual attacks; and 

CW: “cry wolf”, number of messages sent by the agent requesting assistance for 

attacks that did not really happen. 

The coefficients a, b, c state the relative importance of each factor. They should be 

tuned beforehand or during the initial learning phase. 

We consider total resources available as those actually available at the time of 

action, which makes the function and the agent’s behavior dynamic during that 

time. It also means that a relatively costly action is not penalized if the system is 

under very light load, because the number of available resources is high and even 

small actions are heavily penalized if the system is utilizing almost all its resources. 
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Note that this function could be calculated—in a future version of AGENTX—for 

homogeneous groups of VMs (e.g., only the application servers), to better reflect 

the situation and the world state, providing AGENTX with a more granular and 

detailed view of its environment. 

The learning is performed by implementing an anomaly detector leveraging a small 

set of hard-coded features (for the purposes of this section) including the following: 

 Number and severity of IDS alerts 

 Anti-malware software alerts 

 Unauthorized accesses  

 Access to HPs or dummy files 

 Alerts from dummy processes 

 File integrity violations 

 System load (aggregate, by group, and individual) 

9.6 Testing 

To validate the performance of the agent, we have to set up a testing environment, 

perform real attacks, and evaluate its efficiency. Since the agent is learning with 

each attack, we should let the evaluation continue for some time so the learning 

process can take place. It would also be ideal to face the agent with real attackers, 

not only simulated attacks.  

We propose to validate the agent on defending a network with several servers in a 

virtualized environment with simulated “regular” traffic. The setup has the 

following advantage: since we know which traffic was generated by us, we can 

safely assume the rest of the traffic comes from the attacker; therefore, we can 

easily recognize the justified and unjustified cries for help. The detection part is 

also easily achieved in this setup. We can leave the network running for a long time 

with little effort. To prevent the abuse of the compromised machines, we can let the 

“servers” actually be high-interaction HPs. 

9.7 Additional Considerations 

Future developments include, of course, the use of real-world tools to implement 

the autonomous agents (while this proof of concept could be developed in a 

scripting language like Python), the implementation of all possible security 
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measures to secure and protect the agent, as well as the development of the 

cooperative agents postulated previously. 

Moving away from a monolithic architecture (at the hypervisor level) to a swarm-

like distributed architecture of agents living on every VM on the system is another 

valid possibility. 

9.8 Further Reading 

Russell S, Norvig P. Artificial intelligence: a modern approach. 3rd ed. London 

(UK): Pearson, 2010. ISBN: 978-0136042594. 

Guarino A., Autonomous intelligent agents in cyber offence. In: Podins K, 

Stinissen J, Maybaum M, editors. 5th International Conference on Cyber Conflict 

– Proceedings; 2013 June 4-7; Tallinn, Estonia. IEEE. 

10. Conclusions 

Environmental factors—such as mobility, lethality, connectivity, and power 

constraints—limit specific functions and abilities of particular agents and the 

combination of these factors place an upper bound on agents’ capability. 

Development and deployment of autonomous agents in the military context is full 

of caveats and will require much consideration before agents are mature enough to 

be used in mission-critical systems on the battlefield. Future work will require 

advances in multi-agent architectures, human‒agent interfaces, agent reliability, 

agent resiliency, agent resource requirements, and agent standardization. The 

promises of autonomous agents are great, but much work remains to ensure they 

can operate in a variety of environments. 

Possible data sources for autonomous agents can be largely divided into 5 

categories: 1) network traffic, 2) event logs, 3) hardware sensor data, 4) OS-level 

software sensor data, and 5) high-level inputs. While actually collecting and 

labeling more of the exercise data are comparatively easy to address in exercise 

planning, the scale/timespan/variety of live exercises is by definition limited by 

resource availability. A complementary approach is to create realistic data sets on 

demand in emulated/simulated testbeds capable of supporting arbitrary network 

topologies, sufficiently real hardware, real OS/application/attack/defense software, 

and a combination of synthetic and real actors.  

The determination of an optimal course of action may need to be computed in a 

small amount of time, with limited resources. An agent may be required to respond 

to the actions of intelligent actors (human or otherwise) with partial knowledge 

about the system they are protecting or the impact of its own actions. A suitable 
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decision-making approach should take into account not only the properties of the 

agent itself, but the environment and context in which a decision must be made.  

The agent must incorporate several capabilities. Firstly, the agent needs to perceive 

its environment by evaluating the state of its computer system(s), detecting 

changes, and deciding whether those changes are suspicious. If it does indeed detect 

suspicious changes, the agent must respond in an appropriate and timely manner. 

Secondly, the agent needs to manage trust relationships with other agents and 

humans through communication and cooperation. Lastly, throughout its activities, 

the agent needs to assess itself and its goals, and proactively initiate goal-directed 

actions to improve its performance and exploit opportunities when possible. 

Agents will reside on devices that must operate securely in contested environments 

with limited connectivity. To address these cybersecurity and risk challenges, the 

agent should have capabilities related to ML: autonomy, cyber-risk modeling, and 

adversarial learning. 

An agent’s autonomous capability needs to satisfy the necessary and sufficient 

conditions for adequate situational awareness, security, and battle management by 

both local and remote human operators. To this end, efforts must be undertaken in 

systems development to preserve and optimize the cognitive resources of users. 

Doing that, the human user is adequately prepared to commit their own cognitive 

resources to the realization and consequences of the agent’s action within the 

context of a larger plan. 

  



 

Approved for public release; distribution is unlimited. 

32 

11. References 

Balasubramaniyan JS, Garcia-Fernandez JO, Isacoff D, Spafford E, Zamboni D. 

An architecture for intrusion detection using autonomous agents. In 

Proceedings 14th Annual IEEE on Computer Security Applications; 1998 Dec 

7–11; Phoenix, AZ. p. 13–24. 

Barreno M, Nelson B, Sears R, Joseph AD, Tygar JD. Can machine learning be 

secure? In Proceedings of the 2006 ACM Symposium on Information, 

Computer and Communications Security; 2006 Mar 21–23; Taipei, Taiwan. p. 

16–25.  

Bartos K, Rehak M. Trust-based solution for robust self-configuration of 

distributed intrusion detection systems. 20th European Conference on Artificial 

Intelligence (ECAI’12); 2012 Aug 27–31; Montpelier, France. 

doi:10.3233/978-1-61499-098-7-121. 

Benzel, T. The science of cyber-security experimentation: The DETER project. In 

Proceedings of the 27th Annual Computer Security Applications Conference 

(ACSAC 2011); 2001 Dec 5–9; Orlando, FL. 

Blumbergs B, Pihelgas M, Kont M, Maennel O, Vaarandi R. Creating and 

 detecting IPv6 transition mechanism-based information exfiltration covert 
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List of Symbols, Abbreviations, and Acronyms 

ACDA autonomous cyber defense agent 

AIA autonomous intelligent agent 

AUC area-under-curve 

BPF Berkeley Packet Filter  

C2 command and control 

CAS complex adaptive system 

CMS Cyber Mission Forces 

CPS cyber-physical system 

CPU central processing unit 

CRMM Cognitive Resource Management Model 

CyberVAN Cyber Security Virtual Assured Network  

DARE Dynamic Application Rotation Environment  

DARPA Defense Advanced Research Projects Agency 

DETERLab  Cyber Defense Technology Experimental Research Laboratory 

EAPC  Euro-Atlantic Partnership Council 

eBPF extended BPF  

EMCON emissions control 

ERM Entity Relationship Models 

GPS global positioning system 

HEAL Human Engineering for Aeronautics Laboratory 

HMI human‒machine interface 

I/O input/output  

IDS intrusion detection systems 

IoBT Internet of Battlefield Things 

IoT Internet of Things 
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IP Internet Protocol 

IPS intrusion protection system  

K-L Kullback–Leibler  

MANET mobile ad hoc network 

ML machine learning 

MORE Multiple OS Rotational Environment  

MTD moving target defense 

NATO North Atlantic Treaty Organization 

NSF National Science Foundation 

OMG Object Management Group 

OTE Operational Test and Evaluation 

OTH over the horizon targeting 

PCAST President’s Council of Advisors on Science and Technology 

PfP Partnership for Peace 

TTPs Tactics, Techniques and Procedures 

UML Unified Modeling Language 
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